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SUMMARY

In this work a comparative study of two versions of the projection algorithm used either for time
integration or as an iterative method to solve the three-dimensional incompressible Navier–Stokes
equations is presented. It is also shown that these projection algorithms combined with the finite element
method are particularly suited for the treatment of outflow boundary conditions in the context of
external flows. This assertion is illustrated by means of some numerical examples in which five types of
boundary conditions are compared. The scheme is applied to simulate the flow past a cylinder clamped
on two fixed parallel solid walls. Comparison with experimental data available for this problem shows
good agreement of the velocity and pressure fields, both computed with continuous piecewise linear
elements. Copyright © 1999 John Wiley & Sons, Ltd.
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1. NOTATIONS

The sets involved in the equations considered hereafter are classical spaces of functions defined
in the flow domain V¦R3 with boundary (V, whose definitions are recalled below:
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2. INTRODUCTION

In the framework of the numerical solutions of the incompressible Navier–Stokes equations
there are a few iteration techniques or time integration schemes widely used, which linearize
the problem to be solved at every step. Among these, fractional step algorithms that transform
the problem at every such stage of the solution procedure into a sequence of problems,
including Stokes systems, have proven to be quite effective.

For early versions of this methodology, the authors refer to Bristeau et al. [1], while quoting
some recent variants of it in connection with the fictitious domain technique (Glowinski [2]).

Another approach intensely exploited by some authors is the fully explicit solution scheme
for computing the velocity at every step, followed by the determination of the pressure through
the solution of a Poisson equation. For details on this method the authors refer to Shimura
and Kawahara [3].

Since the early 1960s, the idea of splitting the problem at every step into the calculation of
a non- (necessarily) solenoidal velocity field, by solving an uncoupled advection–diffusion
system, followed by a correction step in which a solenoidal velocity and the pressure are both
derived from the above, appeared to be attractive to many specialists. Actually, this approach
commonly called the projection method, widely in use since then, in the context of finite
difference space discretizations, has the main advantage of allowing the uncoupled computa-
tion of the velocity and the pressure.

For this reason, like several others (see e.g. Heywood et al. [4]), the authors developed
projection methods combined with a finite element discretization, as it naturally leads to the
consideration of different possible variational forms, besides a number of other relevant
theoretical and practical issues.

Incidentally, a rather recent survey of finite element techniques used for solving three-dimen-
sional incompressible flows can be found in Ruas [5], supplemented by Ruas et al. [6] and
references therein.

As a matter of fact, the numerical approach used here is based on the following choices.
First, the split treatment of the Navier–Stokes equations is performed by means of two types
of projection methods, precisely, the original Chorin–Temam one [7,8] and a modification of
it due to Goda [9]. A post-processing of the pressure allows the lack of accuracy usually
encountered in that type of method to be circumvented.

Actually, the authors show that this operation can be performed quite easily and naturally
in a variational context. In so doing, they show that the finite element method presents an
additional advantage when chosen as a discretization method applied to the equations derived
from projection algorithms. Moreover, as it is well-known for almost two decades, the
variational approach lends itself naturally to stabilization techniques of the streamline–diffu-
sion type, such as the streamline-upwind Petrov–Galerkin (SUPG) (Brooks and Hughes [10]),
for an efficient treatment of high Reynolds number flows. In this paper, the authors use a
particular variant of it described in Section 3.

It is shown through an a priori analysis confirmed by a series of numerical examples with
known analytical solutions that classical piecewise linear finite elements are reliable and
accurate in the particular versions of projection algorithms in use. The ability of these
algorithms to effectively produce stationary solutions is also analysed.

The non-symmetric linear systems involved in the advection–diffusion step of the projection
algorithm are solved by an improvement of the conjugate gradient method, named Bi-
CGSTAB (for biconjugate gradient with stabilization [11]). This one is preconditioned by an
incomplete factorization leading to a matrix that shows the same sparse structure as the system
matrix.
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In this respect, the authors point out an additional merit of the SUPG stabilization. Indeed,
one of its main effects is to add a symmetric positive semi-definite part to the discretization
matrix corresponding to the standard Galerkin formulation of the advection–diffusion equa-
tion, without endangering qualitative approximation properties. Hence, they reduce signifi-
cantly the risk of incomplete factorization breakdowns, which often happen to Navier–Stokes
equations discretization matrices. Actually, this did not occur in any of the present numerical
experiments.

Additionally, within the aim of reducing storage requirements, the conjugate gradient
method with incomplete Cholesky factorization pre-conditioning is also used in this paper to
solve all the linear systems of equations with a symmetric positive definite matrix.

The choice of the model problem, i.e. the flow past a cylinder, allows comparisons between
experimental and other numerical results. It also allows the comparison and validation or not
of several types of outflow boundary conditions specified in Section 4, to be used in connection
with projection algorithms. Some of the validated conditions were recently used by other
authors too (see [4]). An extensive study on outflow boundary conditions in the context of
two-dimensional flows can be found in Sani and Gresho [12].

3. THE PROJECTION ALGORITHMS AND THEIR VARIATIONAL FORMS

The authors consider the incompressible Navier–Stokes equations: find a velocity field u and
a pressure p in a flow domain V, such that for given body forces f the following system holds:

Í
Ã

Ã

Á

Ä

(u
(t

−
1

Re
Du+ (u ·9)u+9p= f

9 ·u=0

, (1)

where Re is the Reynolds number, with suitable conditions on the boundary of the domain,
and a given velocity u0 at time t=0.

For a given time step Dt and setting u0=u0, a semi-implicit time discretization of (1) consists
of approximating u( . , nDt) and p( . , nDt) for n=1, 2, . . . by the solution (un, pn) of:

Í
Ã

Ã

Á

Ä

un−un−1

Dt
−

1
Re

Dun+ (un−1 ·9)un+9pn= f

9 ·un=0

(2)

with boundary conditions derived from those of system (1).
The aim of the projection methods is to decompose the former system into two steps,

namely, an advection–diffusion one and a projection one. The main advantage thus obtained
is the uncoupled computation of the velocity and the pressure. The algorithm (in its original
formulation) is written as follows:

u0 given.
For n=1, 2, . . . , compute un and p�

n by:
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Í
Ã

Ã

Á

Ä

un−u�
n

Dt
+9p�

n =0

9 ·un=0

, (3)

where u�
n is the solution of:

u�
n −un−1

Dt
−

1
Re

Du�
n + (un−1 ·9)u�

n = f (4)

with corresponding boundary conditions.
The combination of the two equations of (3) gives:

Dp�
n =

9 ·u�
n

Dt
. (5)

Assuming that (un−u�
n ) ·n� =0 on (V, the Neumann boundary condition (p�

n /(n=0 applies,
where n� denotes the unit outer normal vector on (V.

In fact, even if un is a good approximation of u, in general p�
n does not approximate very

well the physical pressure p. For this reason the authors use a post-processing of it, which
consists of computing the final pressure from the velocity un by

Dpn=9 ·f−9 · [(un ·9)un]. (6)

In fact, the underlying boundary condition:

(pn

(n
= − [(un ·9)un] ·n� + 1

Re
Dun ·n� (7)

can be simplified for sufficiently high Reynolds numbers into:

(pn

(n
= − [(un ·9)un] ·n� . (8)

Summarizing in the case where velocity boundary conditions of the Dirichlet type are
prescribed on (V, the variational form of the two selected algorithms is:&

V
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&
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with suitable boundary data for both u�
n and un.

The value of p̃ n determines which projection algorithm is being used. This is defined as
follows:
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p̃0=0

� 1st algorithm (the Chorin�Temam scheme): p̃ n= p̃ n−1 Ön, (13)

� 2nd algorithm (Goda’s scheme): p̃ n= p̃ n−1+p�
n Ön. (14)

In order to stabilize the discrete version of problem (9) when Re is large, the authors use a
modified version of this variational form obtained by replacing the test function 6 with:

6+r(un−1 ·9)6

in all terms involved except the one preceded by 1/Re. Indeed, this term gives no contribution
owing to the choice of the finite elements in use. r is a parameter depending on the average
edge lengths of the elements, which is adjusted in a manner adapted from the techniques
studied in Franca and Frey [13], Behr et al. [14] and Franca and Hughes [15]. More
specifically, r is the following constant over each tetrahedron K of the mesh:

r/K=
hK

2�u� n−1(GK)� ,

where hK is the averaged edge length of K and GK is the barycenter of K.
The fact that no correction of this value is taken for small element Reynolds numbers is

justified by the fact that the computations are three-dimensional, which prevents producing
values of hK too small. Moreover, in most of the tests performed, the Reynolds number is
sufficiently large to prevent any element Reynolds number from being less than 1. Finally, in
all the cases considered, the computations validated this simplified choice of the stabilization
parameter r, which incidentally avoid the complex calculation of inverse inequality constants
(cf. Franca and Frey [13]). For other choices of r that have proven to work well, the authors
refer to Tezduyar et al. [16] or Tezduyar et al. [17].

Finally, an analysis restricted to a linearized step indicates (see [18]) that piecewise linear
finite elements appear to be an ideal choice to carry out the discretization of the problem
unknowns, even with a non-optimal choice of Dt related to the mesh step size. This point is
developed Section 5.

4. DESCRIPTION OF THE MODEL PROBLEM

A code was developed using the above described methodology in order to solve time-depen-
dent problems. Here it was tested in the framework of the early stages of the classical flow past
a cylinder at different Reynolds numbers and for f=0. The domain V is defined as

V={(x, y, z)�R3/−55x510, −55y55, 05z5Z, x2+y2]1}.

Two cylinder lengths were tested: Z=5 and 10. The boundary conditions are:

u=
!(0, 0, 0) for x2+y2=1, z=0 and z=Z,

(u, 0, 0) for x= −5 and for y=95 provided z"0 and z"Z,

where u=4z(Z−z) or u=1.
Furthermore, some outflow boundary conditions involving the velocity, the pressure and/or

the vorticity have been studied (on x=10):

(A)
(ux

(x
=uy=uz=p=0,
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(B)
(vx

(x
=vz=p=0 and vy=

(u
(z

,

(C)
(uy

(x
=
(uz

(x
=0, ux=ux and

(p
(x

=0,

(D) vz=p=0, and other undefined conditions on u or v,

where v=9�u is the vorticity and u is the given inflow velocity.

Remark 1: These conditions may be implemented by prescibing the following conditions on u�
n

and p�
n :

C.L. 1
(u�

n
x

(x
=u�

n
y=u�

n
z=p�

n =0, [ (A)
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n

x=ux, u�
n
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n =0, [ (A)
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x
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(u�

n
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(x
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y

(x
=
(u�

n
x

(y
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C.L. 4 u�
n

x=ux,
(u�

n
y

(x
=
(u�

n
z

(x
=p�

n =0, [ (B)

C.L. 5 u�
n

x=ux,
(u�

n
y

(x
=
(u�

n
z

(x
=
(p�

n

(x
=0, [ (C)

After several tests (see Section 6.2), the authors concluded that the most interesting
compromise cost realism is obtained through the use of condition C.L. 1. In this respect,
assuming sufficient smoothness of p�

n , it is noted that on the outflow boundary x=constant,
one has:

(ux
n

(x
=
(u�

n
x

(x
−Dt

(2p�
n

(x2 = −Dt
(2p�

n

(x2 = −DtDp�
n = −9 ·u�

n .

Since 9 ·u�
n =(u�

n
x/(x=0 by assumption, one has (ux

n/(x=0.
Moreover, one also has uy

n=u�
n

y−Dt ((p�
n /(y)=0 (respectively uz

n=0) on the outflow
boundary.

5. STUDY OF THE SPACE DISCRETIZATION

In order to derive conditions indicating the adequacy of the finite elements discretization in use
in connection with (3)–(5) and on the appropriate choice of parameter Dt, the authors perform
the following a priori estimate restricted to a given time step for the underlying Stokes
problem:

u�
n −un−1

Dt
−

1
Re

Du�
n = f, (15)

Dp�
n =

9 ·u�
n

Dt
, (16)

un=u�
n −Dt9p�

n . (17)
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The variational form of this system is:&
V

u�
n ·6�+

Dt
Re

&
V

9u�
n ·96�=Dt

&
V

f ·6�−
&

V
un−1 ·6� Ö6�� (H0

1(V))3, (18)

Dt
&

V
9p�

n ·9q=
&

V
u�

n ·9q Öq�L0
2(V)/R, (19)

&
V

un ·6=
&

V
u�

n ·6−Dt
&

V
9p�

n ·6 Ö6� (H0
1(V))3. (20)

In order to study the convergence of system (18)–(20) in a least-squares sense, the authors
consider the underlying bilinear form:

a((u, u�, p�), (6, 6�, q))

=
1
Dt

&
V

u� ·6�+
1

Re
&

V
9u� ·96�+Dt

&
V

9p� ·9q−
&

V
u� ·9q+

&
V

u ·6−
&

V
u� ·6

+Dt
&

V
9p� ·6

and norm:

�(6, 6�, q)�=� 1
Dt

6�2+
1

Re
96�2+Dt9q2+62�1/2

,

where   is the classical norm on L2.
The coerciveness of a is derived for Dt51/4 by:

a((6, 6�, q), (6, 6�, q))

=
1
Dt

6�2+
1

Re
96�2+Dt9q2−

&
V
6� ·9q+62−

&
V
6� ·6−Dt

&
V

9q ·6

]
1
Dt

6�2+
1

Re
96�2+Dt9q2−

1
2
�
Dt9q2+

1
Dt

6�2�+62−
1
2

(62+6�2)

−Dt
�9q2

4
+62�

]
1
2
� 1
Dt

−1
�6�2+

1
Re

96�2+
Dt
4

9q2+
�1

2
−Dt

�62

]
3

2Dt
6�2+

1
Re

96�2+
Dt
4

9q2+
1
4

62 for Dt51/4

]
1
4

�(6, 6�, q)�2.

The coerciveness is so proved with the constant a=1/4.
Furthermore,

a((u, u�, p�), (6, 6�, q))

5
1
Dt

u�6�+
1

Re
9u�96�+Dt9p�9q+u�9q+u6+u�6

+Dt9p�6
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5
� 1
Dt

u�6�+
1

Re
9u�96�+Dt9p�9q+u6�

+
�u�9q+

1


Dt
u�6+
Dt

&
V

9p� ·6
�

for DtB1.

Each term of the right-hand-side above is less or equal to:


2
�u�2

Dt
+

9u�2

Re
+Dt9p�2+u2�1/2

×
�6�2

Dt
+

96�2

Re
+Dt9q2+62�1/2

.

Then, the continuity of the form a is obtained for DtB1:

a((u, u�, p�), (6, 6�, q))5M �(u, u�, p�)� �(6, 6�, q)� with M=2
2 .

The Lax–Milgram theorem allows the conclusion of the existence and the uniqueness of the
solution and Céa’s lemma leads to the study of the error bound:

�(u−uh, u�−u�
h , p�−p�

h )�5M
a

Inf
(6,6�)�Vh

2

q�Qh

�(u−6, u�−6�, p�−q)�,

where (uh, u�
h ), p�

h are the approximations of (u, u�), p� obtained with the underlying finite
element method, namely the one associated with the spaces Vh and Qh of continuous piecewise
linear vector fields or functions in the usual manner. A straightforward calculation yields:

�(u−uh, u�−u�
h , p�−p�

h )�

58
2 Inf
(6,6�)�Vh

2

q�Qh

� 1
Dt

u�−6�2+
1

Re
9(u�−6�)2+Dt9(p�−q)2+u−62�1/2

58
2 Inf
(6,6�)�Vh

2

q�Qh

� 1


Dt
u�−6�+

1


Re
9(u�−6�)+
Dt 9(p�−q)+u−6�

58
2
�

Inf
6��Vh

�u�−6�

Dt

+
9(u�−6�)


Re

�
+ Inf
6�Vh

u−6+ Inf
q�Qh


Dt 9(p�−q)�.

This immediately suggests that the best compromise cost accuracy relies upon the choice
Dt=O(h), even though the error of the computed pressure in H1-norm is no better than an
O(h1/2). This justifies the pressure post-processing from a velocity whose error in L2-norm is
an O(h). Moreover, this a priori analysis suggests that Dt should not be too small as compared
with h. In this case, the pressure error could increase significantly, which may pollute the
velocity field as well. A confirmation of this statement can be found in a recent work by
Guermond and Quartapelle [19].

6. RESULTS AND DISCUSSION

6.1. Tests with known solutions

In the self-explanatory sets of tables below, namely, Tables I, II, III, IV, V and VI, the
authors show a summary of the numerical results for two stationary test problems whose exact
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Table I. Results for the elementary test at Dt=0.05

un−uexaL� p̄ n−pexaL 2 pn−pexaL 2 naProjection

0.08062 0.07202 0.055881 37
2 — — — NCV

0.02534 0.16370 0.03452 462.2

a Number of iterations for convergence.

Table II. Results for the elementary test at Dt=0.25

un−uexaL�Projection p̄ n−pexaL 2 pn−pexaL 2 na

0.05099 0.13903 0.037981 29
— —2 — NCV

2.2 0.01513 0.20736 0.03416 56

a Number of iterations for convergence.

solutions are known. Convergence is to be understood in the sense that the maximum of
�un(x)−un−1(x)� over V is less than or equal to 10−4. The expression NCV means either that
no clear tendency of fulfilment of such a criterion could be observed after a very large number
of iterations, or that the solver Bi-CGSTAB diverges.

The first test is an elementary one where the functions belong to the approximation spaces.
The velocity is given on the boundary by:

u(x, y, z)= (ux, uy, uz),

with

ux(x, y, z)=x+y+z,

uy(x, y, z)=x+y+z,

uz(x, y, z)= −2(x+y+z).

In order to obtain a well-posed problem, the pressure was set to vanish at a given point P.
The exact values of the velocities are the functions ux, uy, and uz above. The exact pressure is:

Table III. Results for the elementary test at Dt=0.0125

napn−pexaL 2Projection p̄ n−pexaL 2un−uexaL�

0.03000 0.025600 0.02308 451
—2 — — NCV

2.2 0.00900 0.18044 0.03946 103

a Number of iterations for convergence.

Table IV. Results for the modified Couette flow at Dt=0.025

pn−pexaL 2p̄ n−pexaL 2un−uexaL� na

2320.082890.974550.13252Projection 1

a Number of iterations for convergence.
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Table V. Results for the modified Couette flow at Dt=0.05

un−uexaL� p̄ n−pexaL 2 pn−pexaL 2 na

0.07446Projection 1 0.50063 0.04449 140

a Number of iterations for convergence.

Table VI. Results for the modified Couette flow at Dt=0.1

un−uexaL� p̄ n−pexaL 2 pn−pexaL 2 na

0.24055 0.39183 0.11263Projection 1 127

a Number of iterations for convergence.

p(x, y, z)=K−x, with K chosen so as to fulfill the condition p(P)=0. This solution
corresponds to f= (−1, 0, 0).

Take Re=100 and r=0.05. Three types of schemes have been implemented, the Chorin–
Temam (‘Projection 1’), the Goda (‘Projection 2’) and a modification of the latter in which one
does not perform the Petrov–Galerkin stabilization on the pressure term of (9) (‘Projection
2.2’). The mesh is uniform and consists of 1331 nodes.

The authors compare the exact pressure with the value p̄ n equal respectively to p�
n in the case

of the Chorin–Temam algorithm and to p̃ n in the case of the Goda algorithm.
These results confirm that the original Chorin–Temam algorithm reaches the stationary

solution more easily than the Goda one. They also justify the modification of the latter.
Indeed, the algorithm ‘Projection 2.2’ reaches the stationary solution, whereas the original
Goda does not, and turns out to be more accurate than the Chorin–Temam one. Moreover,
in both cases, the post-processing of the pressure shows its efficiency.

It is interesting to point out that, although the finite element spaces in use contain the exact
velocity and pressure of this test problem, the algorithm itself fails to represent its solution
nearly exactly as required. This point is worth an explanation, for it outspokenly reveals one
the most well-known drawbacks of projection algorithms: the poor approximation of the
pressure. Indeed, since a homogeneous Neumann boundary condition applies to it in the
solution of the Poisson problem (5) for p�

n , it is not possible to compute an exact (or nearly
exact) linear pressure, as long as it does not satisfy such a condition! Of course this indicates
that in more complex cases the projection algorithm presents an intrinsic default, as far as
standard pressure calculations are concerned, and this justifies the need of post-processing this
field.

The second test is a modified Couette flow (Figure 1). This physical stationary problem
consists of studying the flow between two coaxial cylinders having an infinite length. The inner
one with radius equal to a rotates around the common axis with an angular velocity Vt/a and
an axial velocity V1. The outer one with a radius equal to b is fixed. In the computation, a
region bounded by the planes z=0 and z=1 was taken.

Taking a=1 and b=e, the velocity and the pressure are expressed for f= (0, 0, 0) by:

u(x, y, z)= (ux, uy, uz),

with
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ux(x, y, z)= −y
� Vt

e2−1
e2−r2

r2

�
,

uy(x, y, z)=x
� Vt

e2−1
e2−r2

r2

�
,

uz(x, y, z)=V1(1− ln r)

and

p(x, y, z)=
V t

2

(e2−1)2

�r2

2
−

e4

2r2+2e2(1− ln r)
n

.

The boundary conditions are:

� u=0 on the outer cylinder,
� u equals the velocity prescribed as above on the inner cylinder,
� (u/(z=0 on the two faces given by z=0 and z=1.

The pressure is set to vanish at a given point of the outer cylinder. The computations were
performed by meshing one quarter of the domain using two orthogonal symmetry planes
intersecting at axis (0, z), thereby generating again 1331 nodes.

Figure 1. Modified Couette flow.
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Here, neither of the two Goda algorithms led to the stationary solution. This is rather
upsetting since the tests were performed with Re=10.

Nevertheless, this experiment allowed the conclusion of the great robustness of the
Chorin–Temam algorithm for stationary problems, for which the Goda one appears to be
more uncertain. However, when the exact solution could be reached, the latter produced
more accurate results. Here again, the fact that the condition (p/(n=0 does not hold in
both test problems above could explain the observed convergence defaults. Moreover, the
quality of the pressure results obtained through the post-processing clearly justifies the use
of this technique.

Remark 2: The convergence of the algorithm is checked on the basis of the maximum norm
of the velocity increment between two time steps. Notice that the corresponding pressure
increment may not converge within a prescribed tolerance even if the velocity increment
does. This should not be surprising since the pressure approximation properties are known
to be poorer than the velocity ones for projection algorithms. Moreover, the more severe
convergence defaults observed for the Couette problem might have been enhanced by the
prescribed Neumann velocity boundary condition on both ends of the corresponding com-
putational domain.

6.2. Results in the non-stationary model problem

The computational results reported here and compared with experimental data corre-
spond to the very early stages of the flow past a cylinder, during which the existence of
two symmetry planes is observed.

First reported are the results related to the study of the different outflow boundary
conditions with the original Chorin–Temam algorithm. In this part, a mesh denoted by
Mesh 1, consisting of 8723 nodal points, namely the vertices of 44352 tetrahedrons, is used.
The different parameters are Re=200, r=0.05 and Dt=0.05. The shortest length of the
cylinder is considered.

Since the boundary conditions for all the components of u� are identical in the case of
the conditions C.L. 2 and C.L. 3, in their implementation the authors did not use any
penalty technique of a Dirichlet boundary condition applied to one or two of these compo-
nents, like in the case of C.L. 1, C.L. 4 and C.L. 5. This procedure is necessary in the
latter cases, in order to allow the use of only one sparse matrix data structure for the three
components, although the iterative solution itself is not identical for all of them like in the
case of C.L. 2 and C.L. 3. For this reason, the latter have an a priori advantage over the
other boundary conditions considered in this work.

In all the cases a fairly good approximation of the flow is obtained right after the
cylinder. The best results are given by C.L. 1 and C.L. 5, whereas C.L. 2 and C.L. 4 do
not respect the physics of the problem very well. The worst results are those of C.L. 3. It
can be observed in Figure 2 that the projections of the velocity field on the medium planes
z=25 and y=0 at section x=10 for the five conditions. Incidentally C.L. 1 yields an
acceptable compromise between accuracy and computational cost. On the other hand, the
post-processing does lead to a physically reasonable pressure field (Figure 3) both for C.L 1
and C.L. 5 (for C.L. 5 the pressure is prescribed to be zero at point (−1.0, 0.0, 2.5)).

Clearly, further studies are necessary on such topics, which still deserve much of special-
ists’ attention. Nevertheless, the authors experiments allowed the ruling out of some out-
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Figure 2. Velocity projections on planes z=2.5 and y=0 near the outflow boundary at time t=13 for Re=200
computed with boundary conditions C.L. 1–5, the original Chorin–Temam algorithm and Mesh 1.

flow boundary conditions that might seem attractive in the context of projection algorithms.
Moreover, they encourage the use of some others as more likely to yield realistic results, while
being rather easy to implement. In this respect, the authors hope to have given an useful
contribution to all those who face the difficult choice of outflow boundary conditions for
external flows.

In the second part of this study, they consider a flow at a higher Reynods number equal to
1000 past the longest cylinder. The mesh now denoted by Mesh 2 consists of 34947 nodal points
corresponding to 190848 tetrahedrons, but symmetry of the flow with respect to the planes
y=0 and z=5 has been assumed. The numerical parameters are r=0.025 and Dt=0.05. The
selected outflow boundary condition is C.L. 1 taking into account the former results.
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The three types of schemes have been implemented: the Chorin–Temam, the Goda and the
modification of the latter in which one does not perform the Petrov–Galerkin stabilization on
the pressure term of (9). Like in the stationary cases, irregularities were observed with the first

Figure 3. Pressure profile along the x-axis and on the cylinder for z=2.5 at time t=13 for Re=200 computed with
boundary conditions C.L. 1 and C.L. 5, the original Chorin–Temam algorithm and Mesh 1.
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Figure 4. Original Chorin–Temam algorithm (Mesh 2). Projections of the velocity field on planes z=5 and y=0 at
time t=2 for Re=1000 and boundary condition C.L. 1.

algorithm probably due to the poorer accuracy of this projection method (Figure 4). On the
other hand, a considerably better behavior was attained with the second version of Goda’s
algorithm. Figure 5 shows a view of the velocity field at t=2.0 on planes y=0 and z=5,
obtained with the very same algorithm.
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Finally, with a finer mesh denoted by Mesh 3 with 65403 nodal points corresponding to
364392 tetrahedrons, a realistic simulation of the flow as it evolves in time was observed
(Figures 6–9).

Furthermore, note that this configuration allows comparisons with other works, both
numerical and experimental. The top of Figures 10 and 11 shows a zoom near the cylinder of

Figure 5. Modified Goda algorithm (Mesh 2). Projections of the velocity field on planes z=5 and y=0 at time t=2
for Re=1000 and boundary condition C.L. 1.
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Figure 6. Modified Goda algorithm (Mesh 3). Projections of the velocity field on planes z=5 and y=0 at time t=2
for Re=1000 and boundary condition C.L. 1.
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Figure 7. Modified Goda algorithm (Mesh 3). Projections of the velocity field on planes z=5 and y=0 at time t=4
for Re=1000 and boundary condition C.L. 1.
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Figure 8. Modified Goda algorithm (Mesh 3). Projections of the velocity field on planes z=5 and y=0 at time t=6
for Re=1000 and boundary condition C.L. 1.
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Figure 9. Modified Goda algorithm (Mesh 3). Projections of the velocity field on planes z=5 and y=0 at time t=8
for Re=1000 and boundary condition C.L. 1.
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Figure 10. Modified Goda algorithm (Mesh 3). A comparison of numerical results near the cylinder with experimental
data for Re=1000 at times t=2 and t=4.
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Figure 11. Modified Goda algorithm (Mesh 3). A comparison of numerical results near the cylinder with experimental
data for Re=1000 at times t=6 and t=8.
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the velocity field on plane z=5 for t=2.0–8.0. At the bottom, images of the same fields
processed with an experimental arrangement performed by Coutenceau et al. [20] are shown.

Further details about the whole numerical scheme and other computer results mainly
obtained on the Cray C98 of IDRIS, CNRS, France, can be found in [18].

Remark 3: For a realistic simulation of the flow past a cylinder at later stages, the two
symmetry assumptions made here would have to be dropped.

7. CONCLUSIONS

In this paper the authors have shown through a number of examples that classical linear finite
elements represent a convenient choice to approximate both velocity and pressure in the
framework of the solution of the Navier–Stokes equations by projection methods, provided a
post-processing of the latter field using the former one is performed. Among the three versions
of the algorithm tested here, the Chorin–Temam one seems to be more reliable to treat
stationary problems, although the so-called modified Goda algorithm showed globally a better
accuracy in all the cases.

In any case, projection algorithms may show a poor performance when used to solve
stationary problems. The assertion could be explained by the systematic prescription of a
homogeneous Neumann boundary condition to the pressure determined through standard
versions of such algorithms. For this reason too, the computation of a post-processed pressure
may remedy this drawback to some extent, as one can clearly infer from the solution of the
modified Couette flow test problem.

Checking the efficiency of different types of outflow boundary conditions to be implemented
in connection with the splitting that characterizes projection algorithms was one of the
purposes of this paper. It has been found that easy to implement outflow boundary condition
CL. 1 in the context of such numerical approaches combined with the finite element method,
produces physically acceptable results for relatively short computational domains past an
obstacle in external flow simulation.

Finally, as an important conclusion in the light of the experiments performed in this paper,
the authors recommend the modified Goda algorithm with pressure post-processing by a sort
of least-squares methods as a reliable methodology to solve the time-dependent Navier–Stokes
equations. Moreover, the SUPG stabilization (which incidentally is strictly linked with such
modifications of the original Goda’s algorithm) turns out to be a powerful tool to allow the
use of different versions of the pre-conditioned conjugate gradient method, to solve non-sym-
metric discretized advection–diffusion matrix systems.

Summarizing, the authors attempted to clarify the issue concerning the performance that can
be actually expected from projection methods in the computer solution of real life flow
problems. In view of the above conclusions and taking into account the present state of the art
as far as three-dimensional viscous incompressible flow is concerned, they do hope that their
work brings about a constructive contribution to this field.
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